
SPRING 2023 MATH 590: EXAM I: SOLUTIONS AND COMMENTS

Name:

Throughout V will denote a vector space over F = R or C.

(I) True-False: Write true or false next to each of the statements below. (3 points each)

(a) R17 can be spanned by 19 vectors. True

Comment. If B := {e1, . . . , e17} is the standard basis for R17, adding two more vectors to this set
will still span R17 because the space cannot get any bigger.

(b) The only proper subspaces of R3 are planes through the origin. False

Comment. Lines through the origin also give proper subspaces.

(c) Ten linearly independent vectors in R10 form a basis for R10. True

Comment. That n linearly independent vectors form a basis for a vector space of dimension n was
mentioned several times in class, and given as a corollary to a theorem. See the Daily Update of
February 3.

(d) If v1, . . . , vr ∈ V are linearly independent and vr+1 ∈ V , then v1, . . . , vr+1 are linearly independent.
False

Comment. If vr+1 is in Span{v1, . . . , vr}, then the vectors v1, . . . , vr, vr+1 are linearly dependent.

(e) Suppose V = Span{v1, v2, v3, v4} and a1v1 + a2v2 + a3v3 + a4v4 = ~0, with each ai ∈ F and a1 6= 0.
Then V = Span{v2, v3, v4}. True

Comment. Since a1 6= 0, the equation a1v1 + a2v2 + a3v3 + a4v4 = ~0 can be solved for v1 in terms
of v2v3, v4, showing that v1 is a redundant vector - thus upon deleting v1, the space spanned by the
remaining vectors stays the same.
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(II) State the indicated definition, proposition or theorem. (5 points each)

(a) Given independent vectors u1, . . . , ur ∈ V and vectors w1, . . . , wt ∈ V such that Span{w1, . . . , wt} = V ,
state the conclusion of ExchangeTheorem as it applies in this case.

Solution. We have r ≤ t and after re-indexing the wi, V = Span{u1, . . . , ur, wr+1, . . . , wt}.

Comment. Both statements are important components of the conclusion of the Exchange Property.

(b) Given α = {v1, . . . , vn} a basis for V and β = {w1, . . . , wm} a basis for W , define [T ]βα, for T : V → W
a linear transformation.

Solution. For each 1 ≤ j ≤ n, write T (vj) = a1jw1 + · · ·+amjwm, with each aij ∈ F . Then [T ]βα is the m×n

matrix whose (i, j)th entry is aij . Equivalently, [T ]βα is the m× n matrix whose jth column is

a1j
...

amj

.

Comment. This definition was given multiple times in class, appears on Quiz 4 in exactly the same form -
(with its solution posted), and in the Daily Update of February 8.

(c) Suppose T : V →W is a linear transformation, α1, α2 are bases for V and β1, β2 are bases for W . State
the General Change of Basis Theorem relating the matrix of T with respect to α1 and β1 to the matrix of
T with respect to α2 and β2.

Solution. [T ]β2
α2

= [I]β2

β1
· [T ]β1

α1
· [I]α1

α2
.

Comment. See the General Change of Basis Theorem in the Daily Update of February 15.
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(III) Short Answer. (15 points each)

(a) Suppose v1 =


1
2
0
−2

 v2 =


1
1
1
1

, v3 =


0
−4
0
5

. Write a matrix equation you would solve to determine

if the vector w =


4
3
2
1

 belongs to the span of v1, v2, v3 and explain what a possible solution to this

equation means. Do not work out the details of solving the matrix equation.

Solution.


1 1 0
2 1 −4
0 1 0
−2 1 5

 ·
xy
z

 =


4
3
2
1

. The vector w belongs to Span{v1, v2, v3} if this equation has a

solution. If

ab
c

 is a solution, then w = av1 + bv2 + cv3.

Comment. See the Daily Update of January 25 which gives exactly these statements for the general case of
determining when when a vector w is in the span of vectors v1, . . . , vn.

(b) Consider the linear transformations T : R2 → R3 be given by T (x, y) = (2x − y, x − 2y, x + y) and
S : R3 → R2 be given by S(x, y, z) = (x− y+ z, 4x+ 3y+ 2z). State and verify the formula that expresses
the matrix of ST in terms of the matrices for S and T , using the standard bases for R2 and R3.

Solution. If we write E = {e1, e2} for the standard basis of R2 and F = {f1, f2, f3} for the standard basis
of R3, then [ST ]EE = [S]EF · [T ]FE .

1. To calculate [ST ]EE :

(i) ST (e1) = S(T (e1)) = S(2, 1, 1) = (2, 13) = 2 · e1 + 13 · e2
(ii) ST (e2) = S(T (e2)) = S(−1,−2, 1) = (2,−8) = 2 · e1 +−8 · e2.

Thus, [ST ]EE =

(
2 2
13 −8

)
.

2. To calculate: [T ]FE : T (e1) = (2, 1, 1) = 2 ·f1+1 ·f2+1 ·f3 and T (e2) = (−1,−2, 1) = −1 ·f1+−2 ·f2+1 ·f3.

Thus [T ]FE =

2 −1
1 −2
1 1

.

3. To calculate [S]EF : S(f1) = S(1, 0, 0) = (1, 4) = 1 · e1 + 4 · e2, S(f2) = S(0, 1, 0) = (−1, 3) = −1 · e1 + 3 · e2,
S(f3) = (0, 0, 1) = (1, 2) = 1 · e− 1 + 2 · e2.

Thus, [S]EF =

(
1 −1 1
4 3 2

)
.

Thus,

[S]EF · [T ]FE =

(
1 −1 1
4 3 2

)
·

2 −1
1 −2
1 1

 =

(
2 2
13 −8

)
= [ST ]EE .

Comment. A homework problem of exactly of this type (with more difficult bases, but dimension two spaces)
was given on February 10.
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(c) Suppose α and β are bases for V . Let P be the matrix obtained by writing the vectors in α in terms
of the vectors in β. Describe in terms of P the matrix obtained by writing the vectors in β in terms of the
vectors in α. Justify your answer.

Solution. Note that P = [I]βα. Then writing the basis β in terms of α gives [I]αβ , which is P−1, since

[I]βα · [I]αβ = [I]αα = identity matrix = [I]ββ = [I]αβ · [I]βα.

Comment. See the discussion concerning the Change of Basis Theorem in the Daily Update of February 13
and the product formula presented on February 10.

(IV) State and prove the Rank plus Nullity Theorem (called the Dimension Theorem in our textbook.) (25
points)

Solution. Rank plus nullity theorem. Let T : V → W be a linear transformation between finite
dimensional vectors spaces. Then:

dim(V ) = dim(im(T )) + dim(ker(T )).

Proof. Set r := dim(ker(T )) and n := dim(V ). Let v1, . . . , vr be a basis for dim(ker(T )). We may extend
this set to a basis v1, . . . , vr, vr+1, . . . , vn for V . We claim B := {T (vr+1), . . . , T (vn)} is a basis for im(T ). If
the claim holds, then

dim(V ) = n = (n− r) + r = dim(im(T )) + dim(ker(T )),

which proves the theorem.

B spans im(T ). Take w ∈ im(T ). Then w = T (v) for some v ∈ V . We may write

v = a1v1 + · · ·+ arvr + ar+1vr+1 + · · · anvn,
since v1, . . . , vn is a basis for V . Applying T to both sides of this equation, we get

w = T (v) = a1T (v1) + · · ·+ arT (vr) + ar+1T (vr+1) + · · ·+ anT (vn)

= ~0 + + · · ·~0 + ar+1T (vr) + · · ·+ anT (vn)

= ar+1T (vr) + · · ·+ anT (vn),

since each vi ∈ ker(T ), for 1 ≤ i ≤ r. This shows B spans im(T ).

Linear independence of B. Suppose br+1T (vr+1) + · · ·+ bnT (vn) = ~0, with each bi ∈ F . Since T is a linear

transformation, we have T (br1vr+1 + · · ·+ bnvn) = ~0, showing that br+1vr+1 + · · ·+ bnvn ∈ ker(T ). Writing
this last vector in terms of the basis for ker(T ), we have

br+1vr+1 + · · ·+ bnvn = b1v1 + · · ·+ brvr,

for b1, . . . , br ∈ F . Thus,

(∗) − b1v1 − · · · − brvr + br+1vr+1 + · · ·+ bnvn = ~0,

in V . Since v1, . . . , vn form a basis for V , all of the coefficients in (*) are 0. In particular, br+1 = · · · = bn = 0,
showing that the vectors in B are linearly independent. Hence B is a basis for im(T ), completing the proof
of the claim, and the proof of the theorem.

Comment. The statement and proof were presented in class February 20. When presenting a theorem, it is
important to present and state clearly all premises of various parts of the argument. A proof is more than
a sequence of equations, but requires appropriate exposition as well.
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